Real-Time & Embedded Systems Past, Present, and Future

Dr. Doug Locke Locke Consulting, LLC www.doug-locke.com

1

- What is a real-time System?
- What is an embedded System?
- Where have we come from?
- What have we achieved?
- Where are we going?

What is a Real-Time System?

- 1. Correctness is a function of time?
- 2. Must respond to external device in less than X microseconds?
- 3. Real-fast?
- 4. Missed deadline means catastrophic result?
- 5. System should respond "instantaneously"
- 6. All of the above?
- 7. None of the above?

What is an Embedded System?

- Small device, like a cell phone?
- Small processor installed in some other device, like a car?
- Software that controls a consumer device?
- Must have real-time response?

My favorite:

• Any system where the user doesn't want to know that it includes a processor

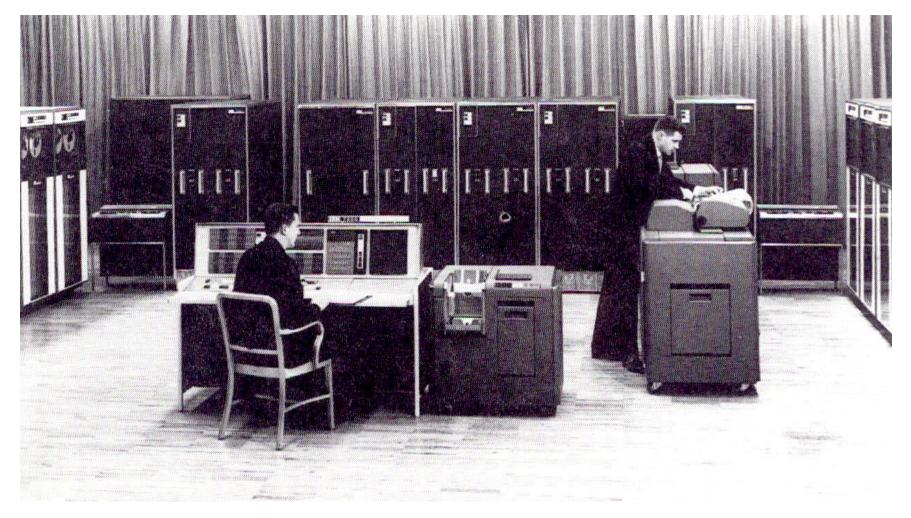
Examples of Real-Time / Embedded Systems

- Car engine
- Cell phone
- Set-top box
- Car navigation
- Industrial control
- Telecom switch
- Global Positioning System

- Air Traffic Management
- Satellite flight manager
- Satellite Ground Control
- TV receiver
- Flight control
- Electric shaver
- Toaster

5

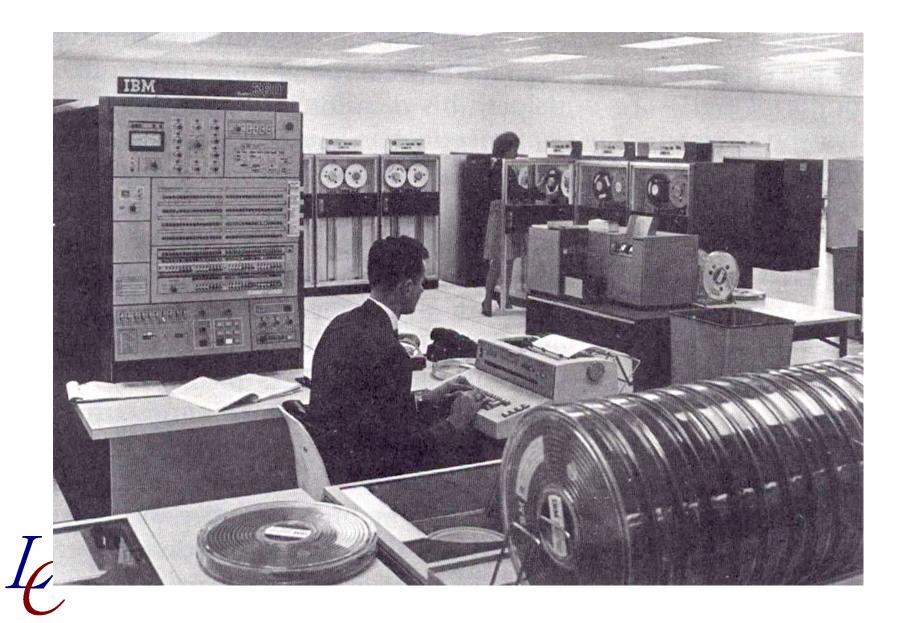
- What is a real-time System?
- What is an embedded System?
- Where have we come from?
 - What have we achieved?
 - Where are we going?


Punch Card

		_																					-				-	÷			-																			-		1			1									-12	
																																																																	I
																																																																•	
	1	0 0	0	0	0	0 1) (0	0 0	0 0	0	0	0 () (0 0	0	0	0 1	0 0	0 1	0	0	0	0 0	0 (0	0	0	0 1	0 0	0	0	0 1	0 0	10	0	0	0 0) ()	0	0	0 (0 0	0	0	0 0	0	0 0	0 (0	0 0	0	0 (0 0	0			0	01	0	U	UI	UL	U	
		1 2	3	4	5	6	7 8	9	10 1	1 12	2 13	14	15 1	6 1	7 18	19	20	21 2	2 2	3 24	25	26	27 3	28 2	9 30	31	32	33 :	34 3	35 31	6 37	38	39 4	10 4	1 42	2 43	44	15 4	6 47	48	49	50 5	51 52	2 53	54 !	55 56	5 57	58 5	9 60	61 6	4 4	4	1 1	5 6/	1	1 1	1 1	12	13 1	+ /3	1	1	1 1	1	
		11	1	1	1	1	11	1	1	11	1	1	1	1 1	11	1	1	1	11	1	1	1	1	1	1	1	1	1	1	11	1	1	1	1	11	1	1	1	11	1	1	1	11		1	11	1	1	11	1			'	11	1			'	•		1				
					-			2		0 0		2	2.	2 1	, ,	2	2	2	, ,	2 2	2	2	2	2	2 2	2	2	2	2	2 1	, ,	2	2	2 1	2 2	2 2	2	2	2 2	2	2	2	22	2	2	22	2	2:	22	2	22	2	2	2 2	2	2 :	2 2	2	2 2	2 2	2	2	2 2	2	
1		3 3	3	3	3	3	3 3	3	3 :	3 3	3	3	3 :	3 :	3 3	3	3	3	3 :	3 3	3	3	3	3	3 3	3	3	3	3	3 3	3 3	3	3	3 :	3 3	3 3	3	3	3 3	3	3	3	3 3	3	3	3 3	3	3 :	3 3	3	3 3	3	3	3 3	3	3	3 3	3	3 :	3 3	3	3 :	33	3	
																												-					3																												A	A			
	1	4 4	4	4	4	4	4 4	4	4	4 4	4	4	4	41	14	4	4	4	4 /	44	4	4	4	4	4 4	4	4	4	4	4 4	1 4	4	4	4 4	4 4	14	4	4	4 4	4	4	4	4 4	+ 4	4	4 4	+ 4	4	4 4	4	4 4	4	4	44	4	4	4 4	4	4.	8 **	*	4.	2 "		
								5	5		. 5	5	5 1	5 1		5	5	5	5 1	5 5	5	5	5	5	5 6	5	5	5	5	5 1	5 5	5	5	5 1	5 5	5 5	5	5	5 5	5	5	5	5 5	i 5	5	5 5	i 5	5	5 5	5	5 5	5	5	5 5	5	5	5 5	5	5 1	5 5	5	5 1	5 5	5	
		-																																																															
	-	6 6	6	6	6	6	6 6	6	6	6 6	6 6	6	6	6 1	6 6	6	6	6	6	6 8	6 6	6	6	6	6 6	6	6	6	6	6 1	6 8	5 6	6	6 1	6 6	6 6	6	6	6 6	6 6	6	6	6 6	6 6	6	6 6	6 6	6	66	6	6 6	6	6	6 6	6	6	6 6	6	6 1	5 6	6	6 1	66	6	
		77	17	17	7	7	77	7	7	77	17	7	7	7	77	7	7	7	7	7 1	17	7	7	7	1	17	1	7	7	7	11	17	1	7	11	11	1	1	1	11	1	1	1	11	1	1	11	1	11	1	11	1	1	77	'	'	"	'	'		'	'		'	
														0		0	0	0	0	0	0 0	0	0	0	0		0	0	0	0	0 1	2 9	9	8	8 1	Q Q	2	8	8 1	2 2	8	8	8	8 8	1 8	8 1	RR	8	8 8	8	8 1	8 8	8	8 8	8	8	8 8	8	8	8 8	8	8	8 8	8	ľ
		8 8	5 8	5 8	8	8	8 8	18	8	01	0 0	0	0	0	0 0	0	0	0	0	0 1	0 0	0	0	0	0 (0 0	0	0	0	0	0 0	0 0	0	0	0 0	0 0	0	0	0 1		0	0								-															1
	-	9 9	9 9	9	9	9	9 9	9	9	9 9	9 9	9	9	9	9 9	9	9	9	9	9 !	9 9	9	9	9	9	9 9	9	9	9	9	9 9	9 9	9 9	9	9 9	9 9	9	9	9	9 9	9	9	9	9 9	9	9 !	9 9	9	9 9	9	9 9	9 9	9	9 9	9	9	9 9	9	9	9 9	19	9	99	9	
		1 2	2 3	3 4	5	6	7 8	9	10	11 1	2 1	3 14	15	16	17 1	8 19	3 20	21	22	23 2	4 2	5 26	27	28	29 3	0 3	1 32	2 33	34	35	36 3	37 3	8 39	40	41 4	42 4	3 44	45	46 4	17 4	8 49	50	51 5	52 5	3 54	55 5	56 57	58	59 6	0 61	62 8	3 64	65	66 6	7 68	69	70 7	1 72	73	14 7	5 76	11	18 19	9 80	
		1				24	IBA	150	180		22		1%	1.14	-				-								-	-									-																		-										

Model 029 Keypunch

IBM 7090



System/360 Model 40

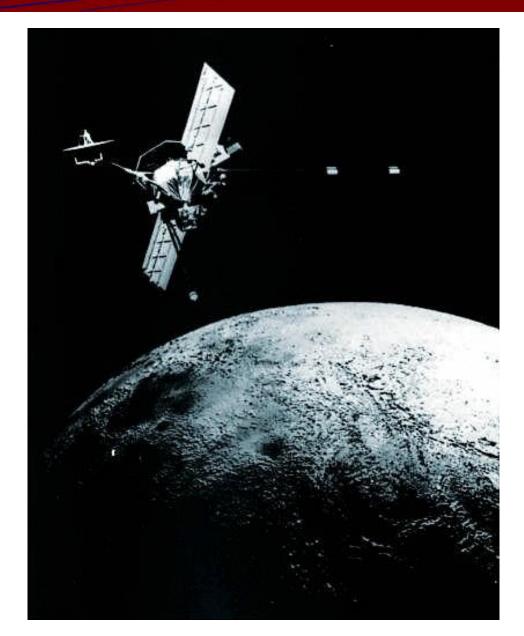
System/360 Model 50

LAMPS Mark I

LAMPS Radar Test

LAMPS Mark III

Ticonderoga Class (USS San Jacinto, CG-56)


AWACS

NASA Space Shuttle

NASA Mariner 10

Embedded Computer Capacities

- Memory Size:
 - 1970 8-32KB
 - 1975 16-64KB
 - 1980 64-128KB
 - 1985 128-1MB
 - 1990 1-4MB
 - 1995 2-32MB
 - -2000 4-128MB

- CPU Speed: 128 KIPS
 - 1.2 MIPS
 - 5 MIPS
 - 20 MIPS
 - 50 MIPS
 - 150 MIPS
- 800 MIPS
- Increasing variability throughout this time

Size of Large Embedded Software

- How large is "large":
 - 1970 10K SLOC
 - 1975 150K SLOC
 - 1980 1M SLOC
 - 1985 2M SLOC
 - 1990 4M SLOC
 - 1995 4M SLOC (increasing component use)
 - -2000 4M SLOC (increasing component use)
- Increasing variability throughout this time

Time Constraints

- Shortest Time Constraints Reliably Achievable:
 - 1970 50 milliseconds
 - 1975 1 millisecond
 - 1980 500 microseconds
 - 1985 100 microseconds
 - 1990 50 microseconds
 - 1995 10 microseconds
 - -2000 5 microsecond

Embedded Systems Proliferation

- Applications:
 - 1970 Military / Aerospace
 - 1975 Factory Automation / Telecom
 - 1980 Consumer Electronics
 - 1985 Wireless Telecom / Automotive
 - 1990 Games / Toys / Entertainment / Internet
 - 1995 Appliances
 - -2000 RFID

- What is a real-time System?
- What is an embedded System?
- Where have we come from?
- What have we achieved?
 - Where are we going?

What Was (Is Still) the Biggest Challenge?

- Exponentially increasing capacity
- Exponentially increasing software size and complexity
- Linearly increasing pool of developers
- Fixed or decreasing budgets
- The big problem how to build exponentially more systems, and exponentially more complex systems with linearly increasing labor.

A Major Problem – But Not New

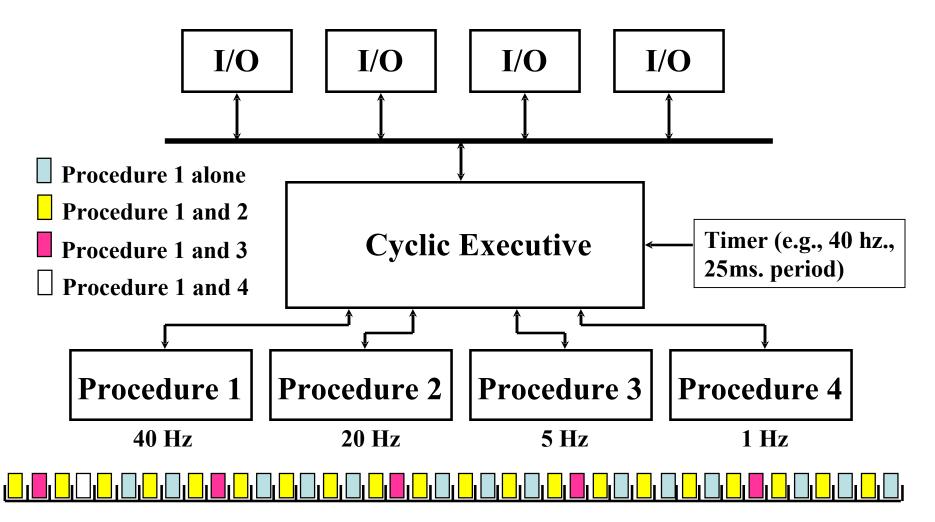
Strange game – the only way to win is not to play! - Joshua in the movie *Wargames*

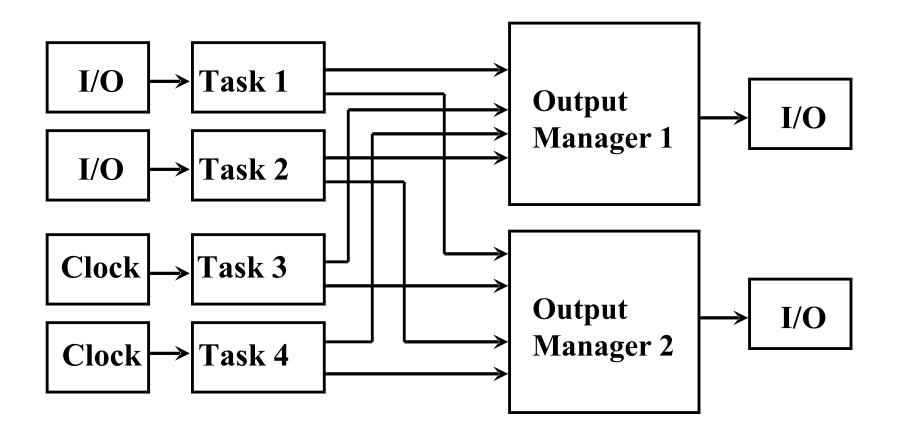
Only way to produce complex software:

- Avoid writing, testing, documenting code
 - Use Commercial Off-The Shelf (COTS)
 - E.g., RTOS, CORBA, Database, Web-based, Automated tools, reuse existing code
- Unintended consequence
 - Performance problems

Present RT/Embedded Challenges

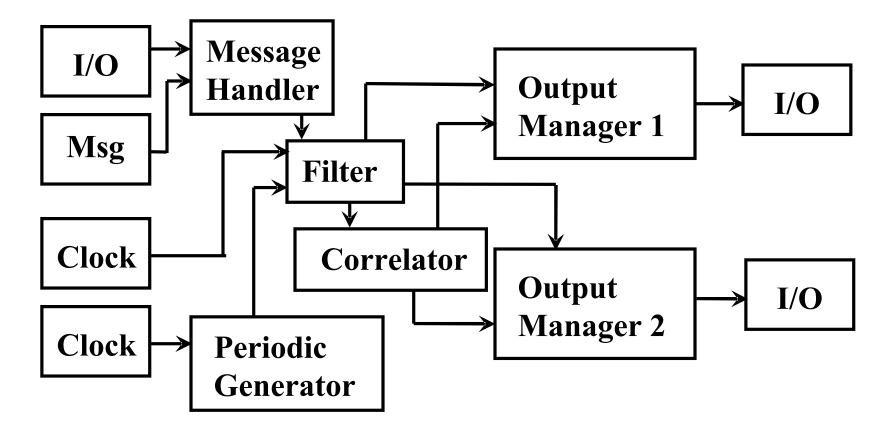
Top Three Problems:


- Managing software engineering organizations
- Ensuring development of a performancerelevant architecture
- Finding suitable tools (language, COTS, analysis, simulation)

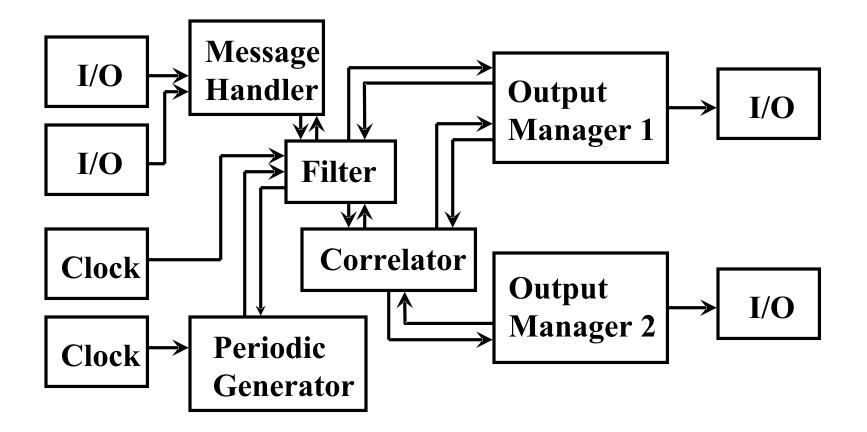

A Taxonomy of Real-Time Architectures

- The vast majority of existing real-time applications use one of four (overlapping) architectural types:
 - 1. Timeline (a.k.a. cyclic executive or frame-based)
 - 2. Event-driven (with both periodic and aperiodic activities)
 - 3. Pipeline
 - 4. Client-Server

Timeline or Cyclic Executive


Event-Driven

Tasks generally priority scheduled


Pipeline

Tasks usually ad-hoc scheduled

Ŀ

Client-Server

Tasks usually ad-hoc scheduled

Ŀ

Architecture Summary

- None of the architectures described are free of problems
 - Timeline is extremely expensive to integrate and maintain
 - Event-driven model is predictable for relatively static designs
 - Pipelines commonly result in non-preemptive delays (i.e., priority or policy inversion), few tools for predictable response
 - Client Server infrastructures perform similarly to pipelines except concurrency can be much more limited.
- The Bottom Line: Architecture decisions have a major effect on
 - Performance
 - Safety
 - Fault Tolerance
 - Life Cycle Cost

IEEE Computer Society TC-RT

- What has our community produced?
- Quite a lot a few examples:
 - Rate (Deadline) Monotonic Scheduling
 - Utility (or Value) Function Scheduling
 - Many other scheduling paradigms (e.g., EDF)
 - Imprecise Computations
 - Fault Tolerant Computing (e.g., Simplex)
 - Real-Time Databases
- We have had considerable influence
 - POSIX
 - Real-Time CORBA
 - Real-Time Linux
 - Ada 95, Real-Time Java
- But much of our contribution isn't widely known

- What is a real-time System?
- What is an embedded System?
- Where have we come from?
- What have we achieved?
- Where are we going?

Where Are We Going?

- Resources are still limited
 - Therefore they will still need careful management
 - Scheduling still matters
- "Non-functional" requirements are now the primary focus of most designs
 - Real-time response
 - Fault tolerance
 - Availability
 - Quality of Service
 - Power Management
 - Security
 - Cost (people cost + resource cost)
- This is where we continue to make a difference

Doug Locke Locke Consulting, LLC www.doug-locke.com

